首页|智能台区低压故障定位及主动上报方法研究

智能台区低压故障定位及主动上报方法研究

扫码查看
针对传统低压台区配电网故障诊断方法存在适用范围有限、模型复杂等问题,提出一种基于计算智能的故障诊断模型.基于实时PMU数据诊断电力故障,根据故障内容上报智能控制中心,设计一种改进的多 目标进化算法求解多 目标故障诊断模型.实验阶段,以一个故障区域电力系统接线模型为例,对所提模型进行验证.仿真结果表明,所提模型可以有效地克服单个或多个保护继电器故障的影响,从而高效确定故障组件.同时,通过交叉对比分析,所提模型故障识别平均准确率为0.9171.仿真结果进一步验证了所提模型的鲁棒性和稳定性.
Research on Low-voltage Fault Location and Active Reporting Method in Intelligent Station Area
In order to solve the problem that the traditional fault diagnosis method for distribution network in low-voltage station area has limited application range and complex model,this paper proposes a fault diagnosis model based on computational intel-ligence.An improved multi-objective evolutionary algorithm is designed to solve the multi-objective fault diagnosis model based on the real-time PMU data,and the fault content is reported to the intelligent control center.In the experimental stage,a pow-er system connection model in a fault zone is taken as an example to validate the proposed model.Simulation results show that the proposed model can effectively overcome the effects of single or multiple protective relay faults,and thus efficiently identify fault components.At the same time,the average accuracy of the proposed model is 0.9171 by cross-comparison analysis.The simulation results further verify the robustness and stability of the proposed model.

power systemlow-voltage station areafault diagnosisoptimization modelmulti-objective evolutionary algorithm

陈育培、吴达雷、龙致远、陈龙瑾、杨娴、吴定

展开 >

海南电网有限责任公司,海南,海口 570100

电力系统 低压台区 故障诊断 优化模型 多目标进化算法

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(5)