首页|基于停电事件的户变异常研判方法研究

基于停电事件的户变异常研判方法研究

扫码查看
当前低压配电网数据采集不全面,配电台区拓扑关系存在不确定性,为了解决这个问题,研究设计配电台区的户变异常识别系统.系统的户变关系异常识别模型中由BP神经网络和SOM神经网络构成,完成数据的聚类分析和网络映射,基于提取出的特征信息完成异常识别任务.系统的拓扑识别模块中加入了超级电容组,在失电状态下仍能够完成用户侧信息的采集和停电事故的上报.实验结果显示,该研究系统中的识别效率最高,识别时间最低为2724 ms,异常识别最高为98.7%.
Research on the Method of Household Abnormity Analysis Based on Power Outage Event
In view of the incomplete data collection of the current low-voltage distribution network and the uncertainty of the to-pological relationship of the distribution platform,this study designs a household variation anomaly recognition system for the distribution platform.The anomaly recognition model of household variation relationship in the system is composed of BP neu-ral network and SOM neural network,which completes the clustering analysis and network mapping of data,and completes the anomaly recognition task based on the extracted feature information.A supercapacitor group is added to the topology identifica-tion module of the system,which can collect user information and report power outage accidents even when the system is pow-ered off.Experimental results show that the system has the highest recognition efficiency,the lowest recognition time is 2724 ms,and the highest anomaly recognition is 98.7%.

low-voltage distribution network topologyidentification of household changes anomaliesBP neural networkclus-ter analysissupercapacitorpower outage event

马晓琴、薛晓慧、孟祥甫、张俊超、严嘉正

展开 >

国网青海省电力公司信息通信公司,青海,西宁 810000

国网青海省电力公司,青海,西宁 810000

低压配电网拓扑 户变异常识别 BP神经网络 聚类分析 超级电容 停电事件

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(5)