首页|基于改进GRU-DNN的收货风险预警模型构建及仿真

基于改进GRU-DNN的收货风险预警模型构建及仿真

扫码查看
针对现有收货风险预警方法准确率低的问题,结合Gate Recurrent Unit(GRU)和Deep Neural Networks(DNN),提出一种基于改进GRU-DNN模型的收货风险分析方法.通过采用模糊综合分析法(FSA)筛选出收货风险主要评价指标,并将指标输入通过对抗性训练与预测相似性改进的GRU-DNN网络中进行分类识别,实现了收货风险分析.仿真结果表明,所提的改进GRU-DNN风险预警方法可实现收货风险预警,且在准确率、精确率、召回率、F1各项指标上表现良好,均达到86%以上的有效率,相较于传统基于 DNN、Convolutional Neural Network(CNN)和 Multivariable Linear Regression Model(MLR)等模型的风险预警方法,具有明显的优势和良好的预测性能和鲁棒性.
Construction and Simulation of Risk Early Warning Model for Receiving Products Based on Improved GRU-DNN
In view of the low accuracy of the existing receiving risk early warning methods,a receiving risk analysis method based on the improved GRU-DNN model is proposed.By using fuzzy comprehensive analysis(FSA)to screen out the main evaluation indicators of receiving risk,and input the indicators into GRU-DNN network improved by adversarial training and prediction similarity for classification and identification,the receiving risk analysis is realized.The simulation results show that the improved GRU-DNN risk early warning method can realize the receipt risk early warning,and performs well in accuracy,precision,recall and F,indicators,with an efficiency of more than 86%.Compared with the traditional risk early warning methods based on DNN,CNN and MLR models,it has obvious advantages and good prediction performance and robustness.

risk assessmentfuzzy clusteringGRU modelDNN network

陈清兵、章光东、徐康、肖志敏

展开 >

国网安徽省电力有限公司,安徽,合肥 230022

国网安徽省电力有限公司物资分公司,安徽,合肥 230061

国网安徽省电力有限公司池州供电公司,安徽,合肥 247100

风险评价 模糊聚类 GRU模型 DNN网络

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(5)