首页|基于时序配合的主从微电网需求侧资源动态聚类算法

基于时序配合的主从微电网需求侧资源动态聚类算法

扫码查看
为了合理利用和动态聚类主从微电网需求侧资源,提高资源利用效率和运行性能,提出了基于时序配合的主从微电网需求侧资源动态聚类算法.在时序配合下,对主从微电网需求侧资源进行提取.将主从微电网需求侧资源负荷峰谷差、负荷波动率最小化和负荷消纳率最大化作为 目标函数,设定主从微电网需求侧资源曲线波动率和负荷互补约束条件,构建主从微电网需求侧资源动态聚类模型.基于动态调整惯性权重的粒子群算法,求解主从微电网需求侧资源动态聚类模型,实现主从微电网需求侧资源动态聚类.实验结果表明,所提算法的主从微电网需求侧资源动态聚类效果较好,能够有效实现主从微电网需求侧资源的合理利用,提高主从微电网需求侧资源动态聚类效率.
Dynamic Clustering Algorithm for Demand Side Resources of Master-slave Microgrid Based on Temporal Coordination
In order to grasp the changes in power demand,and efficiently schedule and manage power and improve resource uti-lization efficiency,a master-slave microgrid demand side resource dynamic clustering algorithm based on temporal coordination is proposed.Under the coordination of time series,the method extracts the demand side resources of the master-slave micro-grid.The objective function is to minimize the peak valley difference,load fluctuation rate,and load absorption rate of the de-mand side resources of the master-slave microgrid.The fluctuation rate of the demand side resource curve and load complemen-tary constraints of the master-slave microgrid are set,and a dynamic clustering model of the demand side resources of the mas-ter-slave microgrid is constructed.A particle swarm optimization algorithm based on dynamically adjusting inertia weights is used to solve the dynamic clustering model of demand side resources in the master-slave microgrid,achieving dynamic clustering of demand side resources in the master-slave microgrid.The experimental results show that the proposed algorithm has a good dynamic clustering effect on the demand side resources of the master-slave microgrid,and can effectively achieve reasonable uti-lization of the demand side resources of the master-slave microgrid,which improves the efficiency of dynamic clustering of the demand side resources of the master-slave microgrid.

timing coordinationmaster-slave microgriddynamically changing inertia weightsdemand side resourceparticle swarm optimization algorithmdynamic clustering of resource

袁晓鹏、申少辉、汪涛、关英宇

展开 >

北京科东电力控制系统有限责任公司,北京 100194

时序配合 主从微电网 动态调整惯性权重 需求侧资源 粒子群算法 资源动态聚类

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(5)