首页|基于混沌遍历PSO的LS-SVM风电超短期功率预测研究

基于混沌遍历PSO的LS-SVM风电超短期功率预测研究

扫码查看
为了提高风电超短期功率预测准确度,提出了一种混沌遍历PSO优化的LS-SVM的风电超短期功率预测模型.采用混沌算法优化粒子群,提高粒子跳出局部最优的能力,用混沌遍历的粒子群优化LS-SVM的核函数核偏离系数,获得期望的输出.采集风电功率相关数据集,采用混沌遍历粒子群优化的LS-SVM算法建立风电超短功率预测模型.将混沌遍历PSO优化的LS-SVM和LS-SVM,对UCI的函数进行回归测试,验证了所提方法具有更高的预测精度.采用所提方法、GA-LS-SVM、LS-SVM、BP和SVM分别建立风电功率预测模型,对比结果表明,所提方法具有更好的预测效果,更适用于解决风电功率预测,为电网制定策略提供理论依据.
Research on Ultra-short-term Wind Power Prediction Based on Chaotic Ergodic PSO by LS-SVM
In order to improve the accuracy of ultra-short-term wind power prediction,a chaotic ergodic PSO optimized LS-SVM model for ultra-short-term wind power prediction is proposed.The method uses chaos algorithm to optimize particle swarm op-timization,improves the ability of particles to jump out of the local optimum,and uses chaos traversal particle swarm optimiza-tion LS-SVM kernel function kernel deviation coefficient,gets the desired output.The LS-SVM algorithm based on chaotic er-godic particle swarm optimization is used to establish the wind power ultra-short power prediction model.LS-SVM and LS-SVM optimized by chaotic traversal PSO are used to perform regression tests on UCI functions,which verify that the proposed method has higher prediction accuracy.The proposed method,GA-LS-SVM,LS-SVM,BP and SVM are used to establish wind power prediction models,respectively.The comparison results show that the proposed method has better prediction effect and is more suitable for solving wind power prediction,which provides a theoretical basis for power grid development strategy.

PSOLS-SVMwind powerpowerprediction

马妍

展开 >

国网河南省电力公司郑州供电公司,河南,郑州 450006

PSO LS-SVM 风电 功率 预测

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(5)