首页|基于动态感兴趣区域和大数据的气象灾害动态预警方法

基于动态感兴趣区域和大数据的气象灾害动态预警方法

扫码查看
为了降低气象灾害损失,提出基于动态感兴趣区域和大数据的气象灾害动态预警方法.构建客户端/服务器模式的气象灾害动态预警框架,采集气象相关信息及受灾主体信息,经数据处理层处理后,利用改进模糊C均值聚类算法,提取卫星云图的动态感兴趣区域,确定气象灾害场景及可能影响区域,采用3个改进深度收缩自编码网络,分别提取感兴趣区域气象因素、环境因素、受灾主体因素特征,构建场景识别的Softmax分类器,确定场景与各致灾因素的关联度,结合支持向量机确定气象灾害等级、类型,实现气象灾害的动态预警.实验结果表明,该方法聚类效果突出,能识别气象灾害类型及等级.
Dynamic Early Warning Method of Meteorological Disasters Based on Dynamic Region of Interest and Big Data
In order to reduce the loss of meteorological disasters,a dynamic early warning method of meteorological disasters based on dynamic regions of interest and big data is proposed.This paper builds a dynamic early warning framework for mete-orological disasters in the client/server mode.The system collects meteorological-related information and disaster subject infor-mation,and processes them by the data processing layer.The fuzzy C-means clustering algorithm is improved to extract the dy-namic area of interest of the satellite cloud image,determine the meteorological disaster scene and the possible affected area.Three improved deep shrinkage self-encoding networks are used to extract the meteorological factors,environmental factors,and disaster-affected subject factors in the area of interest respectively.feature,and then construct a Softmax classifier for scene recognition,determine the degree of correlation between the scene and various disaster-causing factors,and combine the support vector machine to determine the level and type of meteorological disasters to achieve dynamic early warning of meteoro-logical disasters.The experimental results show that the clustering effect of this method is outstanding,and it can identify the types and grades of meteorological disasters.

dynamic region of interestbig datameteorological disasterdynamic early warningdisaster causing factor

向立莉

展开 >

湖北省气象局机关服务中心,湖北,武汉 430074

动态感兴趣区域 大数据 气象灾害 动态预警 致灾因素

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(5)