首页|基于超分辨率图像重建的轻量化目标检测算法研究

基于超分辨率图像重建的轻量化目标检测算法研究

扫码查看
利用面向边缘的卷积模块、像素注意力机制和重参数化技术使超分辨率重建算法图像分辨率得到提升,使图像特征细节表现更为优越;利用YOLOv4目标检测算法并结合Focus结构、双向特征金字塔网络和轻量级子通道注意力机制,提高中、低分辨率图像目标检测精度.经实验研究,基于超分辨率重建的轻量化目标检测算法对图像目标具有较好的检测效果,有效提升了图像的检测精度,对提升图像中的细小目标检测精度具有一定的参考意义.
Research on Lightweight Super-resolution Reconstruction Algorithm Based on Progressive Feature Fusion Convolutional Network
This article utilizes edge oriented convolution modules,pixel attention mechanisms,and reparameterization tech-niques to improve the image resolution of the super-resolution reconstruction algorithm,resulting in superior representation of image feature details.Utilizing the YOLOv4 object detection algorithm and combining the Focus structure,bidirectional feature pyramid network,and lightweight sub channel attention mechanism,the accuracy of object detection in medium and low resolu-tion images is improved.Through experimental research,the lightweight object detection algorithm based on super-resolution reconstruction has a good detection effect on image targets,effectively improves the detection accuracy of images,and has cer-tain reference significance for improving the detection accuracy of small targets in images.

super-resolution reconstructionmulti-layer separable convolutionfeature pyramid networkattention mechanism

王超英

展开 >

东莞职业技术学院,电子信息学院,广东,东莞 523808

超分辨率重建 多层可分离卷积 特征金字塔网络 注意力机制

2022年度东莞市科技特派员项目2022年度东莞职业技术学院国家双高计划电子信息工程技术专业群专项政校行企项目2023年度东莞职业技术学院国家双高计划电子信息工程技术专业群专项政校行企项目

20221800500732ZXD202201ZXD202315

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(6)
  • 6