首页|改进LDA模型在影视作品推荐中的应用研究

改进LDA模型在影视作品推荐中的应用研究

扫码查看
为了解决影视资源推荐精度问题,引入隐含狄利克雷分布(LDA)完成对影视作品影评数据分析.考虑LDA无法体现各特征词重要性,将注意力机制嵌入网络,提高模型精度.结果显示,在推荐准确率测试中,以MoviesLens-1M数据进行测试,所提出模型准确率为0.936,相对同类推荐技术精度最好.由此可见,所提出推荐模型在系统稳定性、推荐效果上均有出色效果.
Research on the Application of Improved LDA Model in Film and Television Works Recommendation
In order to solve the accuracy problem of film and television resources recommendation,the latent Dirichlet allocation(LDA)is introduced to complete the analysis of film and television works review data.Considering that LDA can not reflect the importance of each feature word,the attention mechanism is embedded into the network to improve model accuracy.The re-sults show that in the recommendation accuracy test,by the MovieLens-1M data,the proposed model has an accuracy of 0.936,which is the best compared to similar technologies in terms of accuracy.From this,it can be seen that the proposed rec-ommendation model has excellent application results in system stability and recommendation effectiveness.

recommendation algorithmfilm and television workLDAattention mechanism

申菲

展开 >

河南应用技术职业学院,基础教学部,河南,郑州 450007

推荐算法 影视作品 LDA 注意力机制

郑州市社科联项目

1096

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(6)
  • 9