首页|基于多任务特征融合算法的电力大数据增量式自组织映射方法

基于多任务特征融合算法的电力大数据增量式自组织映射方法

扫码查看
为了实现电力大数据精准映射,基于多任务特征融合算法研究电力大数据增量式自组织映射方法.对电力大数据进行分解,以线性组合形式划分特征类型;利用多任务特征融合算法设计候选分类类别数量,确定自组织映射目标;通过不同数据的语义长度对应所属类型,实现电力大数据的增量式自组织映射,完成增量式数据的自组织映射方法设计.以某省实际运行的电力公司为测试对象,对其一年内产生的电力大数据作为测试样本,分别将其按照具体的类型进行映射,验证新方法.实验结果表明,新方法可以实现精准的自组织映射,在整个过程中不会产生数据交换误差,具有应用价值.
Incremental Self-organizing Maps Method of Electric Power Big Data Based on Multi-task Feature Fusion Algorithm
In order to achieve accurate mapping of electric power big data,the incremental self-organizing maps method of elec-tric power big data is studied based on multi-task feature fusion algorithm.The electric power big data are decomposed,and the feature types are divided in the form of linear combinations.The multi-task feature fusion algorithm is used to design the num-ber of candidate classification categories and determine the target of self-organizing maps.The incremental self-organizing maps of electric power big data is achieved by the semantic length of different data corresponding to the types they belong to,and the design of the self-organizing maps method of incremental data is completed.The new method is verified by taking the electric power company which is actually running in a province as the test object,and the electric power big data generated in one year as the test sample,which is mapped according to the specific types respectively.The experimental results show that the new method can achieve accurate self-organizing maps,does not produce data exchange errors in the whole process,and has applica-tion value.

electric power big dataself-organizing mapmulti-task feature fusion algorithmfeature type

刘鲲鹏、宫立华、汪莉

展开 >

国家电网有限公司客户服务中心,天津 300309

电力大数据 自组织映射 多任务特征融合算法 特征类型

国网客服中心2023年客户服务数据管理能力成熟度提升技术服务项目

SGKF0000DFJS2310026

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(6)
  • 15