首页|基于优化变点-四分位法的光伏异常数据检测

基于优化变点-四分位法的光伏异常数据检测

扫码查看
针对光伏电站运行原始数据中异常数据占比高、数据总体质量差的特点,对数据的异常识别与清洗是进行数据分析、预测的前提.为此,分析了光伏电站辐射强度-功率异常数据的特征和来源,提出一种基于滑动标准差曲线线性拟合的变点检测法,以及一种变点-四分位联合的光伏功率异常数据识别算法.利用多个光伏电站数据验证了所提算法的有效性和普适性,实现了对零散型、堆积型等各类异常数据的良好检测.
Photovoltaic Anomaly Data Detection Based on Optimized Change Point and Quartile
In view of the characteristics of high proportion of abnormal data and poor overall quality of data in the original opera-tion data of photovoltaic power station,the identification and cleaning of abnormal data is the premise of data analysis and pre-diction.Therefore,this paper analyzes the characteristics and sources of photovoltaic power station radiation intensity-power a-nomaly data,and proposes a change point detection method based on linear fitting of sliding standard deviation curve and a change point quartile joint photovoltaic power anomaly data recognition algorithm.The effectiveness and universality of the pro-posed algorithm are verified by the data of several photovoltaic power stations,and the good detection of scattered,stacked and other abnormal data is realized.

photovoltaic power stationanomaly detectionphotovoltaic powerchange point detectionquartile

马天东、耿天翔、李峰、钟海亮

展开 >

国网宁夏电力有限公司,宁夏,银川 750001

国网宁夏电力有限公司电力科学研究院,宁夏,银川 750001

光伏电站 异常检测 光伏功率 变点检测 四分位

国家电网公司科技项目

5229NX20007Z

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(6)
  • 8