首页|基于迁移学习和LSTM网络的光伏系统负荷预测

基于迁移学习和LSTM网络的光伏系统负荷预测

扫码查看
由于受到太阳辐照度、温度和一些随机因素的影响,光伏发电功率具有较强的间歇性和波动性,很难精确预测.为了提高光伏负荷预测模型的准确性,提出一种基于迁移学习和LSTM网络结合光伏系统负荷预测方法.选择基于参数的迁移学习方式,并考虑到神经网络越到高层提取的信息越专有化,对基于LSTM的PV-DT提出固定第一层参数的迁移方式.研究结果表明,所提光伏系统负荷预测方式可以精确预测正常运行条件下的光伏发电量,并检测光伏系统中存在的故障,从而使检修维护人员可以在最短的时间内采取相应的措施,最大限度地减少由于故障而引起的功率损失,从而提高光伏系统的运行性能.
Load Prediction of Photovoltaic System Based on Transfer Learning and LSTM Network
Due to the influence of solar irradiance,temperature and some random factors,the photovoltaic(PV)power genera-tion has strong intermittency and volatility,so it is difficult to make accurate PV power prediction.In order to improve the ac-curacy of the trained PV load prediction model,a PV system load prediction method based on transfer learning and LSTM net-work is proposed.The transfer learning method based on parameters is selected,and considering that the information extracted by neural network becomes more proprietary as they go to higher levels,a transfer method with fixed first-layer parameters is proposed for PV-DT based on LSTM.PV system load forecasting results show that the proposed method can accurately predict the normal operation conditions of PV power generation,and detect fault existing in the PV system,so that the maintenance staff can take corresponding measures in a short time to minimize the power loss.It may improve the performance of the PV system.

photovoltaic systemload predictiontransfer learningLSTM networkpower plantpower generation

冯舒宜、钱东

展开 >

国网江苏省电力有限公司盐城供电分公司,江苏,盐城 224001

光伏系统 负荷预测 迁移学习 LSTM网络 电站 发电量

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(6)
  • 9