首页|基于改进的ALS协同过滤图书推荐算法研究

基于改进的ALS协同过滤图书推荐算法研究

扫码查看
为了解决传统协同过滤算法存在着数据稀疏性、准确性以及图书偏好的量化等问题,获得更加理想的图书推荐效果,基于ALS模型的算法原理,使用读者图书借还记录的平均借阅时长生成读者图书偏好矩阵,引入Pearson相似度分析读者图书相似度,改进ALS模型造成的因子信息丢失问题,填充未评分项数据,并设计了算法实现流程,为特定读者推荐其偏好图书,通过实验验证算法的准确性.实验结果表明,改进的ALS算法的RMSE值降低了 8.2个百分点,推荐算法的性能及准确度都有所提升.
Research on Book Recommendation Algorithm Based on Improved ALS Collaborative Filtering
In order to solve the problems existing in traditional collaborative filtering algorithms,i.e.,data sparsity,accuracy and quantification of book preference,and obtain more ideal book recommendation effect,this research is based on the algo-rithm principle of the ALS model.The average borrowing time of the reader's book borrowing and returning records is used to generate the reader's book preference matrix,Pearson similarity is introduced to analyze the reader's book similarity,and the problem of factor information loss caused by the ALS model is improved.The system fills in the non-scored item data,and de-termines the algorithm implementation process to recommend the preferred books for specific readers.This paper verifies the accuracy of the algorithm through experiments.The experimental results show that the RMSE value of the improved ALS algo-rithm reduces 8.2 percentages,and the performance and accuracy of the recommended algorithm are improved.

recommended algorithmmatrix factorizationALScollaborative filtering

王倩丽

展开 >

西安航空学院,图书馆,陕西,西安 710077

推荐算法 矩阵分解 ALS 协同过滤

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(6)
  • 12