首页|基于改进随机森林算法的低压用户窃电行为自适应监测方法

基于改进随机森林算法的低压用户窃电行为自适应监测方法

扫码查看
用户窃电行为频发,针对窃电后的日用电量,电压、三相电流变化监测过程困难,精度低的问题,提出基于改进随机森林算法的低压用户窃电行为自适应监测方法.利用分布式结构采集低压用户的用电信息,通过控制振荡器(CCO)与单线程单元(STA)的相互配合,实现一天内96点电表曲线数据采集;从已采集到的用电信息中提取窃电用户的电量、电流与电压的用电曲线偏离度特征;将这些特征输入随机森林算法开始训练,经训练后获取自适应监测样本,并向随机森林算法中引入惩罚项因子,提升训练能力,使其具有自适应性,完成低压用户窃电行为的自适应监测.经实验验证,该方法能够精确采集用户的日用电量,在监测时可迅速发现用户窃电后的电压、三相电流变化,同时还可以实现多种窃电行为的监测.
An Adaptive Monitoring Method Based on Improved Random Forest Algorithm for Power Stealing Behavior of Low-voltage Users
The electricity stealing behavior of users occurs frequently.Aiming at the problems of difficult monitoring process and low accuracy of daily power consumption,voltage and three-phase current changes after the electricity theft,an adaptive monitoring method of low-voltage users'electricity stealing behavior based on improved random forest algorithm is proposed.The distributed structure is used to collect the power consumption information of low-voltage users.Through the cooperation between the control oscillator(CCO)and the single threaded unit(STA),the 96 point meter curve data collection in one day is realized.It extracts the deviation degree characteristics of power consumption curve of electric quantity,current and voltage of power stealing users from the collected power consumption information.These features are input into the random forest algo-rithm to start training.After training,the adaptive monitoring samples are obtained,and the penalty factor is introduced into the random forest algorithm to improve the training ability and make it adaptive,so as to complete the adaptive monitoring of low-voltage users'electricity theft behavior.The experimental results show that this method can accurately collect the daily power consumption of users,quickly find the changes of voltage and three-phase current after the power theft,and realize the monitoring of a variety of power theft behaviors.

improved random forest algorithmlow-voltage usermonitor of stealing electricitythree-phase current

王骏、梁东、高迪、董振祥、高晓婧、陈婧

展开 >

国网冀北电力有限公司,北京 100052

国网冀北电力有限公司张家口供电公司,河北,张家口 075001

国网信通亿力科技有限责任公司,福建,福州 350003

改进随机森林算法 低压用户 窃电行为监测 三相电流

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(6)
  • 15