首页|基于多策略粒子群算法的变电站二次设备缺陷识别

基于多策略粒子群算法的变电站二次设备缺陷识别

扫码查看
变电站二次设备经过长期运行,对一次设备的保护程度逐渐变弱,缺陷渐显.针对上述问题,提出一种基于多策略粒子群算法的变电站二次设备缺陷识别方法.利用振动加速度传感器采集二次设备运行状态时的振动信号,从振动信号中提取极值差、信号静态变化程度、信号振动剧烈程度、信号分布形态偏移度、信号偏离正态分布的程度、信号时域波形因子、信号脉冲因子等7个特征参数,构建适应度函数,利用多策略粒子群算法计算每个粒子的适应度值,并按照最大适应度值,一一对应变电站二次设备缺陷因子,完成变电站二次设备缺陷类型识别.实验结果表明,所研究方法应用下,继电器识别出来的缺陷类型为触点松动开裂,熔断器识别出来的缺陷类型为溶体熔断,控制开关识别出来的缺陷类型为拒动缺陷,与实际情况均为一致,识别准确性高.
Defect Identification of Substation Secondary Equipment Based on Multi Strategy Particle Swarm Optimization Algorithm
The long-term operation of substation secondary equipment may lead that the protection degree of primary equipment gradually weakens and defects are exposed.Aiming at this problem,a defect identification method of substation secondary e-quipment based on multi strategy particle swarm optimization algorithm is proposed.The vibration acceleration sensor is used to collect the vibration signal when the secondary equipment is running.Seven characteristic parameters are extracted from the vibration signal,including extreme value difference,signal static change degree,signal vibration intensity,signal distribution form deviation degree,signal deviation from normal distribution degree,signal time domain waveform factor and signal pulse factor.A fitness function is constructed,and the fitness value of each particle is calculated by multi strategy particle swarm op-timization algorithm.According to the maximum fitness value,the defect factors of substation secondary equipment are corre-sponding one by one to complete the defect type identification of substation secondary equipment.Testing results show when the the method is applied,the defect type identified by the relay is contact looseness and cracking,the defect type identified by the fuse is fuse fusing,and the defect type identified by the control switch is refusal defect,which is consistent with the actual situation,and the identification accuracy is high.

multi strategy particle swarm optimizationsubstation secondary equipmentfeature extractiondefect identifica-tion method

孙为兵、翁惠廉、郭冰、邱慧、李玉松

展开 >

扬州浩辰电力设计有限公司,江苏,扬州 225000

天津鑫时代能源科技有限公司,天津 300384

多策略粒子群算法 变电站二次设备 特征提取 缺陷识别方法

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(6)
  • 14