首页|基于改进U-Net模型的地震波初至到时拾取分析

基于改进U-Net模型的地震波初至到时拾取分析

扫码查看
为了提高地震波的拾取精度,在分析U-Net工作机制的基础上设计一种优化后的U-Net模型.该模型由桥接、编码、解码共同构成.用卷积神经网络进行分类,利用池化操作提取低层次特征参数,由于选择池化操作模式时会引起拾取精度的明显降低,故选步长为4的卷积方式.根据评价指标判断STA/LTA、U-Net与改进U-Net 3种方法的处理性能.研究结果表明:利用Tensorflow与Keras对网络实施训练,改进U-Net模型达到了 99%的精度.epcho由10提高至50,P波参数识别准确率从72%提高至94%,S波识别准确率从63%提高至94%.最初损失为10.25,经过训练后100个epcho减小至0.15.改进U-Net相对传统地震信号处理方法达到了更优的查准率、查全率与F1分值指标,采用卷积神经网络进行处理时则可以利用卷积操作提取地震波形特征产数,具备更强的适应性.
First-arrival Pickup Analysis of Seismic Waves Based on Improved U-Net Model
In order to improve the accuracy of seismic wave picking,an optimized U-Net model is designed based on analyzing the working mechanism of U-Net model.The model consists of bridging,coding and decoding.Convolutional neural network is used for classification,and pooling operation is used to extract low-level feature parameters.In selecting pooling operation mode,the picking accuracy is significantly reduced,and the convolution mode is selected as the 4-step.According to the evalu-ation indexes,the processing performance of STA/LTA,U-Net and improved U-Net are judged.The results show that the im-proved U-Net model achieves 99%accuracy by Tensorflow and Keras to train the network.The epcho is increased from 10 to 50,and the accuracy of P-wave identification is increased from 72%to 94%,and the accuracy of S-wave identification is in-creased from 63%to 94%.The initial loss is 10.25,and reduced to 0.15 after training to 100 epcho.Compared with the tradi-tional seismic signal processing method,the improved U-Net achieves better precision,recall and F1 Score index.When the convolutional neural network is used for processing,the feature yield of seismic waveform can be extracted by the convolutional operation,which has stronger adaptability.

seismic waveU-Net modelneural networkpicking accuracy

司文学、李超

展开 >

甘肃中冶岩土工程有限公司,甘肃,酒泉 735000

兰州大学,地质科学与矿产资源学院,甘肃,兰州 730000

地震波 U-Net模型 神经网络 拾取精度

国家自然科学基金

51775157

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(7)