首页|基于改进神经网络PID的主蒸汽温度优化控制研究

基于改进神经网络PID的主蒸汽温度优化控制研究

扫码查看
针对电厂主蒸汽温度PID串级控制系统参数整定繁琐、自适应性较差的问题,提出一种改进神经网络PID串级控制方法.为了降低主蒸汽温度控制系统的不确定性,基于最小误差熵(MEE)准则训练串级控制中的主神经网络PID控制器,并利用滚动时域窗法递归估计跟踪误差的熵,提升算法运行效率.将主蒸汽温度误差序列和部分可测扰动输入神经网络PID控制器输入层,实现反馈控制与前馈控制相融合,提升控制系统抗干扰能力.通过与采用最小误差平方和(MSE)准则的神经网络PID控制器对比,采用MEE的神经PID控制器可以减小过热汽温的波动,减少控制系统的随机性.
Research on Optimal Control of Main Steam Temperature Based on Improved Neural Network PID
Aiming at the problems of complicated parameter tuning and poor self-adaptability of PID cascade control system for main steam temperature in power plant,an improved neural network PID cascade control method is proposed.In order to re-duce the uncertainty of the main steam temperature control system,the main neural network PID controller in the cascade con-trol is trained based on the minimum error entropy(MEE)criterion,and the entropy of the tracking error is estimated recur-sively by using the rolling time domain window method to improve the operation efficiency of the algorithm.The main steam temperature error sequence and some measurable disturbances are sent to the input layer of the neural network PID controller to achieve the integration of feedback control and feedforward control and improve the anti-interference ability of the control sys-tem.Compared with the neural network PID controller using the minimum sum of square error(MSE)criterion,the neural PID controller using MEE can reduce the fluctuation of superheated steam temperature and reduce the randomness of the con-trol system.

main steam temperatureneural network PIDminimum error entropy criterionminimum sum of square error cri-terionuncertaintyanti-interference

陆寿嵩、王晶岩、蔚焱

展开 >

国能陈家港发电有限公司,江苏,盐城 224624

主蒸汽温度 神经网络PID 最小误差熵准则 最小误差平方和准则 不确定性 抗干扰

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(7)