首页|基于深度学习的城市主干道路交通拥堵水平预测

基于深度学习的城市主干道路交通拥堵水平预测

扫码查看
为了解决城市主干道路交通拥堵问题,提出一种基于深度学习的城市主干道路交通拥堵水平预测方法.建立城市主干道路交通网络的Katz相似度矩阵,保存路网的结构特征,获得城市主干道路交通流数据.采用局部敏感判别分析模型,将交通流数据映射到低维流形,获得最优投影矩阵,提取城市主干道路交通特征.结合循环神经网络模型(RNN)和长短时记忆网络模型(LSTM),设计长短时记忆循环网络(RNN-LSTM)模型,解决梯度消失问题,输入城市主干道路交通特征,经过训练输出城市主干道路交通拥堵水平预测结果.实验结果表明,所提方法预测准确度在0.8~0.98,预测所需时间平均为24.74 ms,具有一定的应用价值.
Prediction of Traffic Congestion Level on Urban Main Roads Based on Deep Learning
In order to solve the problem of traffic congestion on urban main roads,a deep learning based method for predicting the level of traffic congestion on urban main roads is proposed.A Katz similarity matrix is established for the traffic network of urban main roads.It can preserve the structural features of the road network and obtain traffic flow data of urban main roads.The local sensitivity discriminant analysis model is used to map the traffic flow data to the low dimensional manifold,obtain the optimal projection matrix,and extract the traffic characteristics of urban main roads.Combining the recurrent neural network model(RNN)and the long-term and short-term memory network model(LSTM),the recurrent neural network model for long short-term memory(RNN-LSTM)model is designed to solve the vanishing gradient problem.The network is inputted the traf-fic characteristics of urban main roads,and outputs the prediction results of traffic congestion level of urban main roads after training.The experimental results show that the prediction accuracy of proposed method is between 0.8~0.98,and the aver-age prediction time is 24.74 ms,which has certain application value.

deep learningurban main roadsrecurrent neural network model for long short-term memoryKatz similarity ma-trixprediction of traffic congestion level

吕庆礼

展开 >

南京长江都市建筑设计股份有限公司,江苏,南京 210022

深度学习 城市主干道路 长短时记忆循环神经网络模型 Katz相似度矩阵 交通拥堵水平预测

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(7)