首页|基于多文本图像的虚假新闻多模态检测模型研究

基于多文本图像的虚假新闻多模态检测模型研究

扫码查看
针对互联网环境下虚假新闻泛滥的问题,提取虚假新闻中的文本和图像特征,搭建基于多文本图像的虚假新闻多模态融合检测模型.结果表明:所提模型检测准确率较高,为0.839;微博数据集中att-RNN模型真实新闻的召回率和虚假新闻的精确率最高,分别为0.887和0.855;CCF竞赛数据集中MVAE模型虚假新闻的召回率最高,为0.737,所提模型其余指标均最高;所提模型相较于MVAE和att-RNN模型具有明显的改善(p<0.05),相较于MVAE模型聚集性和可判别性更强.综上所述,所提模型能够较准确地检测虚假新闻.
Research on a Multimodal Detection Model for False News Based on Multi-text Images
In response to the problem of rampant false news in the Internet environment,the study firstly extracts text and im-age features from false news,and then constructs a false news detection model based on multimodal fusion.The results show that the proposed model has a high detection accuracy of 0.839.The att-RNN model in the Weibo dataset has the highest recall rate for real news and the highest accuracy rate for false news,with values of 0.887 and 0.855,respectively.The MVAE mod-el in the CCF competition dataset has the highest recall rate for false news,with values of 0.737.All other indicators of the proposed model are the highest.The proposed model has significant improvement(p<0.05)compared to MVAE and att-RNN models,and has stronger clustering and discriminability than MVAE model.In summary,the proposed model can accurately detect false news.

false news detectionmultimodalfeature fusionattention mechanism

孙宇茹

展开 >

西北大学现代学院,电影学院,陕西,西安 710130

虚假新闻检测 多模态 特征融合 注意力机制

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(7)