首页|基于计算智能的电力数据智能分析及应用研究

基于计算智能的电力数据智能分析及应用研究

扫码查看
为了提升智能电网负荷预测准确率,提出了一种基于深度学习的短期电力负荷预测模型.在长短时记忆网络和卷积神经网络基础上,构建混合CNN-LSTM预测模型结构.利用基于叠加卷积降噪自动编码器对电力数据进行特征提取,提出包含2个堆叠的LSTM层和1个线性输出层的负荷预测模型.24 h短期负荷预测结果表明,所提模型MAE、RMSE、MAPE和R2 指标分别为 232.08、292.19、0.0322、0.909,与 XGBoost 模型相比,性能分别提升 74.8%、73.8%、70.8%和 10.9%.
Research on Intelligent Analysis and Application of Power Data Based on Computational Intelligence
In order to improve the accuracy of smart grid load forecasting,a short-term power load forecasting model based on deep learning is proposed.On the basis of the long-short term memory network and convolutional neural network,a hybrid CNN-LSTM prediction model structure is constructed.The automatic encoder based on superposition convolution noise reduc-tion is used to extract the features of power data,and a load forecasting model with two stacked LSTM layers and a linear out-put layer is proposed.The 24 h short-term load forecasting results show that the MAE,RMSE,MAPE and R2 indicators of the proposed model are 232.08,292.19,0.0322 and 0.909,respectively,and the performance is improved by 74.8%,73.8%,70.8%and 10.9%,respectively,compared with XG Boost model.

smart griddata analysisload forecastingfeature extraction

白晶、周运斌、陈茜

展开 >

国网北京市电力公司调度控制中心,北京 100075

国网北京市电力公司电力科学研究院,北京 100075

智能电网 数据分析 负荷预测 特征提取

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(7)