首页|基于Vision Transformer的阿尔茨海默病分类研究

基于Vision Transformer的阿尔茨海默病分类研究

扫码查看
为了有效地提升对阿尔茨海默病(AD)的磁共振成像(MRI)图像分类准确率,提出一种LC(Layer-Cut)-ViT方法.该方法通过引入Vision Transformer(ViT)的自注意力机制对MRI图像进行层切分,使模型能更好地理解图像的全局信息,同时突出切片间的特征关系.此外,通过配准、颅骨分离算法提取MRI图像的脑部组织部分,进一步提升模型的性能.实验结果显示,所提方法对阿尔茨海默病的MRI图像具有较好的分类能力.
Research on Classification of Alzheimer's Disease Based on Vision Transformer
To effectively improve the classification accuracy of magnetic resonance imaging(MRI)for Alzheimer's disease(AD),we propose an LC(Layer-Cut)-ViT method in this paper.This method introduces the self-attention mechanism of the Vision Transformer(ViT)and performs layer-wise segmentation on the MRI images,to enable the model to better understand the global information of the images while emphasizing the inter-slice feature relationships.Additionally,the extraction of brain tissue from the MRI images is further enhanced by employing registration and skull-stripping algorithms,which results in im-proved performance of the model.Experimental results demonstrate that the proposed method exhibits good classification abili-ty for MRI images of Alzheimer's disease.

Alzheimer's diseaseMRI image classificationVision TransformerLC-ViT

许曙博、郑英豪、秦方博、周超、周劲、陈嘉燕

展开 >

广州城市理工学院机器人工程学院,广东,广州 510800

广州城市理工学院电气工程学院,广东,广州 510800

广州大学,计算机科学与网络工程学院,广东,广州 510006

阿尔茨海默病 MRI图像分类 Vision Transformer LC-ViT

2023年广东省科技创新战略专项资金项目

pdjh2023a0775

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(8)
  • 3