首页|基于FluxNet的热传导方程反问题的求解器

基于FluxNet的热传导方程反问题的求解器

扫码查看
热传导偏微分方程的求解是工业应用中一种重要的计算,为了解决传统的热传导方程正演运算耗时过长的问题,提出一个基于新型的网络结构FluxNet的求解器.通过热传导方程的正演运算获得关于温度场分布图以及对应的热流密度图的数据集,基于深度学习训练该数据集,建立一个具有卷积层和反卷积层的热流密度网络结构FluxNet模型.使用该求解器预测数据以及实际数据的热流密度图进行测试和验证,实验结果得出该求解器预测的热流密度结构相似度均达到90%以上,达到了工业应用需求.
Solver of Heat Conduction Equation Inverse Problem Based on FluxNet
The solution of partial differential equation of heat conduction is an important calculation in industrial applications.To solve the problem that the traditional forward calculation of heat conduction equation takes too long,this paper proposes a solver of heat conduction equation inverse problem based on the new network structure FluxNet.The data set of temperature field distribution images and corresponding heat flux images are obtained by forward operation of heat conduction equation.The data set is trained based on deep learning.It establishes a heat flux network structure FluxNet model with convolution layer and deconvolution layer.The prediction heat flux images of the solver and the reality data are tested and verified.Experimental re-sults show that the structure similarity of heat flux predicted by the solver reached more than 90%,which meets the require-ments of industrial applications.

deep learningsolver prediction modelpartial differential equation of heat conductionheat fluxtemperature field distribution

林浩然、王卓薇

展开 >

广东工业大学,计算机学院,广东,广州 510006

深度学习 求解器预测模型 热传导偏微分方程 热流密度 温度场分布

广东省重点领域研发计划项目

2021B0101190003

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(8)
  • 7