首页|基于迁移学习的乳腺病理图片分类研究

基于迁移学习的乳腺病理图片分类研究

扫码查看
为了辅助乳腺组织病理性切片的良恶性诊断,使用BreakHis公开数据集进行乳腺组织病理图片分类研究.考虑到数据的染色差异和数量不足,分别进行数据的染色归一化和数据增强预处理;采用迁移学习,将微调后的ResNet 50模型用于对预处理后的数据进行分类,得到最高分类准确率为99.60%的结果;将所得结果与现有研究结果进行比较,证明所提方法对处理乳腺组织图片分类问题具有高效性.
Research on Classification of Breast Pathology Images Based on Transfer Learning
To assist the benign and malignant diagnosis of pathological section of breast tissue,this study utilizes the BreakHis public dataset to carry out breast tissue pathology images classification.By considering the staining differences and insufficient quantity of data,the staining normalization and data augmentation preprocessing were respectively carried out.By transfer learning,the fine-tuned ResNet 50 model is used to classify the preprocessed data,which results in the highest classification ac-curacy is 99.60%.The obtained results are compared with existing research outcomes,and proved that the effectiveness of the proposed method in addressing breast tissue image classification.

breast pathology imagestaining normalizationdata enhancementimage classification

马春洁

展开 >

商洛学院,数学与计算机应用学院,陕西,商洛 726000

乳腺病理图片 染色归一化 数据增强 图片分类

陕西省教育厅一般专项

22JK0364

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(8)
  • 6