首页|极端天气多源融合预警方法研究

极端天气多源融合预警方法研究

扫码查看
暴雨、台风等强对流天气导致的故障会对电力系统的安全稳定运行造成极大威胁,因此需要建立有效的故障预警模型.利用深度融合神经网络与多源数据相融合的方法建立极端天气的时空变化预测模型,同时结合输电杆塔的故障分析建立电力设备的故障预测.实验表明:神经网络最终的MAE为0.5,RMSE为0.2,均低于其他方法;在滑坡场景中,4~8号杆塔的损毁概率均超过了 0.5,其中,7号杆塔的损毁概率最高,为0.79;杆塔的故障率随着降雨量的增加逐渐上升.结果表明,该预测模型能够对极端天气下电力设备的故障进行预测,且具有较好的效果.
Research on Multi-source Fusion Warning Method under Extreme Weather Conditions
The normal operation of power equipment is affected by extreme weather such as rainstorm and typhoon,hence,it is necessary to establish an effective fault warning model.The deep fusion neural network and multi-source data fusion method are used to establish a spatiotemporal prediction model for extreme weather.A fault analysis for transmission tower is used to es-tablish this method.The final MAE and RMSE of neural network are 0.5 and 0.2,respectively,which are both lower than other methods.In the landslide scenario,the damage probability of Towers 4 to 8 exceeded 0.5,and Tower 7 has the highest value of 0.79.The failure rate of tower gradually increases when rainfall increases.The proposed prediction model can predict the faults of power equipment under extreme weather and has better results.

extreme weathermulti-source datafault predictionCNN-LSTMtransmission tower

侯艳权、王义春、李岑、佘燕飞、修唯、掌旭

展开 >

国网黑龙江省电力有限公司七台河供电公司,黑龙江,七台河 154600

沈阳嘉越电力科技有限公司,辽宁,沈阳 110136

极端天气 多源数据 故障预测 CNN-LSTM 输电杆塔

&&

522424230004

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(8)
  • 14