首页|基于最优分位数回归随机森林和风险评估指数的统计负荷预测

基于最优分位数回归随机森林和风险评估指数的统计负荷预测

扫码查看
为了支持智能电网的正常运行,应用前一天预测区间(PI)构建概率密度函数来分析随机负荷行为,实现对称区间预测.然而,此方法缺乏预测变量不确定性的预期风险信息,如天气条件和负荷变化,为此提出一种新型的统计负荷预测(SLF)模型,采用概率图、分位数回归随机森林(QRRF)和风险评估指数(RAI)获得负荷需求曲线预测风险的实际图解.为了掌握实际负荷工况,通过准确点预测结果构建所提出的SLF模型,并采用QRRF从各个分位数建立了 PI.为了将外部因素的不确定性与实际负荷相关联,采用概率图计算训练范围内发生的最可能的分位数.根据当前输入,采用RAI计算PI的预期风险.所提出的SLF模型通过新英格兰电力系统数据进行验证,并与基准算法和Winkler评分进行比较.结果表明,与现有基准模型相比,所提方法能够建模更精确的负载PI以及风险评估.
Statistical Load Forecasting Based on Optimal Quantile Regression Random Forest and Risk Assessment Index
In order to support the daily operation of the smart grid,the symmetrical prediction interval(PI)constructed by the probability density function analyzes the random load behavior and realizes the symmetrical interval prediction.However,this method lacks expected risk information such as weather conditions and load changes.A novel statistical load forecasting(SLF)model is proposed by applying quantile regression random forest(QRRF),probability plots,and risk assessment index(RAI)to obtain a practical illustration of the predicted risk of load demand curves.In order to understand the actual load conditions,the proposed SLF model is constructed with accurate point prediction results,and the PI is established from each quantile using QRRF.To correlate the uncertainty of external factors with the actual load,a probability plot is used to calculate the most like-ly quantile of occurrences within the training range.Based on current inputs,the RAI is used to calculate the expected risk of PI.The proposed SLF model is validated with New England power system data and compared with benchmark algorithms and Winkler scores.The results show that the proposed method can model more accurate load PI and risk assessment than existing benchmark models.

statistical load forecastingquantile regressionshort-term load forecastingdiscrete wavelet transformwhale op-timization algorithm

王嘉、郑越、张韬

展开 >

国网西安供电公司,陕西,西安 710032

北京国网信通埃森哲信息技术有限公司,北京 100032

统计负荷预测 分位数回归 短期负荷预测 离散小波变换 鲸鱼优化算法

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(8)
  • 12