首页|基于DF-Stacking模型的交通标志识别

基于DF-Stacking模型的交通标志识别

扫码查看
针对传统机器学习方法抗噪能力欠佳、深度学习方法需依赖大量训练样本等问题,提出基于深度集成森林(DF-Stac-king)的交通标志识别方法.采用多粒度扫描结合级联森林提取图像特征,将所得特征输入Stacking集成模块以分类图像.结果表明:DF-Stacking模型在使用少量训练样本时,特征提取精度比深度学习方法有明显提高;模型在高斯噪声、运动模糊等条件下的分类精度均高于单分类器方法,体现出较强的泛化能力.
Traffic Sign Recognition Based on DF-Stacking Model
To address the problems that traditional machine learning methods have poor noise immunity and deep learning meth-ods rely on a large number of training samples,this paper proposes a traffic sign recognition method based on deep forest-Stac-king(DF-Stacking).Multi-grained scanning combined with cascade forest is used to extract image features.The obtained fea-tures are input to the Stacking ensemble module to classify images.The results show that the DF-Stacking model has signifi-cantly improved feature extraction accuracy over the deep learning method when using a small number of training samples.In addition,the classification accuracy of the proposed DF-Stacking model is higher than that of the single classifier method under the conditions of Gaussian noise and motion blur,reflecting the strong generalization ability.

traffic sign recognitionfeature extractiondeep forestensemble learning

李诗涵、雷聪、贺智

展开 >

中山大学,地理科学与规划学院,广东,广州 510275

南方海洋科学与工程广东省实验室(珠海),广东,珠海 519082

交通标志识别 特征提取 深度森林 集成学习

国家重点研发计划南方海洋科学与工程广东省实验室(珠海)创新团队建设项目国家自然科学基金面上项目

2020YFA071410331102101842271325

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(9)