首页|基于EEMD-GRU神经网络的天然气价格预测模型构建

基于EEMD-GRU神经网络的天然气价格预测模型构建

扫码查看
针对传统方法预测天然气价格准确率低等问题,采取基于集合经验模态分解联结门控循环机制来预测天然气价格.采用集合经验模态分解方法对天然气价格进行自适应分解,通过自相关的方法选择出需要高频的本征模态函数分量,对自相关系数较低的几个高频分量进行分解,利用门控循环机制神经网络对分解出的高频的本征模态函数分量进行特征分析,与低频的本征模态函数分量进行重构结合,更好地利用了天然气价格数据集中的有用信息.实验验证得出,所提方法相比其他传统方法预测天然气价格更准确,具有较高的鲁棒性.
Construction of Natural Gas Price Prediction Model Based on EEMD-GRU Neural Network
In view of the low accuracy of traditional methods in predicting natural gas prices,this paper adopts a gating cycle mechanism based on collective empirical mode decomposition to predict natural gas prices.The collective empirical mode decom-position method is used to adaptively decompose the natural gas price.The intrinsic mode function components that need high frequency are selected through the autocorrelation method.Several high frequency components with low autocorrelation coeffi-cients are decomposed.The characteristics of the decomposed high-frequency intrinsic mode function components are analyzed by the gated loop mechanism neural network.They are reconstructed and combined with the low-frequency intrinsic mode func-tion components,which makes better use of the useful information in the natural gas price data set.The experimental results show that this method is more accurate and robust than other traditional methods in predicting natural gas prices.

set empirical mode decompositiongating mechanismnatural gasprice prediction

黄欣、赵敏彤、郇嘉嘉、李沛、张舒涵

展开 >

广东电网有限责任公司电网规划研究中心,广东,广州 523146

南方电网能源发展研究院有限责任公司,广东,广州 510700

集合经验模态分解 门控机制 天然气 价格预测

国家社会科学基金重大项目广东省基础与应用基础研究基金中国博士后科学基金

19ZDA0812021A15151102952021M691231

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(9)