首页|基于GRASP-PR混合算法的多目标EV充电任务序列优化模型

基于GRASP-PR混合算法的多目标EV充电任务序列优化模型

扫码查看
提出基于GRASP-PR混合算法的多目标EV充电任务序列优化模型,以提高配电网的平峰填谷能力,确保其稳定运行.根据EV出行特点,在分析无序充电模式对配电网负荷峰谷差影响的基础上,构建EV充电任务序列优化模型,采用引入路径重连策略的贪心随机自适应搜索算法对优化模型求解,确定最优EV充电任务序列调度方案.实验结果表明:在无序充电模式下,并网充电EV数量越多,配电网负荷峰谷差越大;该优化模型可实现EV充电任务序列的优化控制,达到平峰填谷效果,降低配电网运行成本、EV充电成本.
Multi-objective EV Charging Task Sequence Optimization Model Based on GRASP-PR Hybrid Algorithm
This paper proposes a multi-objective EV charging task sequence optimization model based on GRASP-PR hybrid al-gorithm to improve the peak shaving and valley filling capacity of the distribution network and ensure its stable operation.Based on the characteristics of EV travel and the analysis of the impact of disordered charging mode on the peak-valley differ-ence of distribution network load,an EV charging task sequence optimization model is constructed.The greedy randomized adaptive search algorithm that introduces path relinking strategy is used to solve the optimization model and determine the opti-mal EV charging task sequence scheduling scheme.The experimental results show that under the disordered charging mode,the more EVs are connected to the grid for charging,the greater the peak-valley difference of the distribution network load.This optimization model can achieve the optimization control of EV charging task sequence,achieve the effect of peak shaving and valley filling,and reduce the operating cost of the distribution network and EV charging cost.

GRASP-PR hybrid algorithmEV charging task sequenceoptimization modelpeak shaving and valley fillingdis-ordered sequence charging mode

周堃、甘业平、白云龙、刘辉舟、郑元杰

展开 >

国网安徽电动汽车服务有限公司,安徽,合肥 230031

国网安徽省电力有限公司,市场营销部,安徽,合肥 230022

GRASP-PR混合算法 EV充电任务序列 优化模型 平峰填谷 无序充电模式

国网安徽省电力有限公司科技项目

52120B220002

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(9)