首页|基于粒子群优化算法的工业可调负荷协同优化调控方法研究

基于粒子群优化算法的工业可调负荷协同优化调控方法研究

扫码查看
针对工业负荷调度中的负荷类型多、总量大且调度空间大的特点,基于需求响应的负荷调度是削峰填谷、提升电网可靠性、降低企业与电网成本的重要方法.为了对不同类型负载进行全面的建模,且兼顾电网与企业的利益问题,提出一种工业负荷调度方法,对于工业场景中的可调负荷、恒功率负荷、从属负荷、储能负荷进行建模,同时考虑降低峰值负荷与生产成本,在实时电价的背景下,通过改进的粒子群优化算法进行求解.对于所提出的工业负荷调度方法进行仿真分析,验证其在工业场景下的可靠性与实用性.
Research on Coordinated Optimization of Industrial Adjustable Load Based on Particle Swarm Optimization Algorithm
In view of many types of loads,large amount and large dispatching space in industrial load dispatching,load dispatc-hing based on demand response is an important method to cut peak and fill valley,improve the reliability of power grid,and re-duce the cost of enterprises and power grids.In order to comprehensively model different types of loads and take into account the interests of power grids and enterprises,this paper proposes an industrial load scheduling method.In this method,the ad-justable load,constant power load,subordinate load and energy storage load in the industrial scene are modeled,and the peak load and production cost are reduced.Under the background of real-time electricity price,the improved particle swarm optimi-zation algorithm is used to solve the problem.In this paper,the proposed industrial load scheduling method is simulated and analyzed to verify its reliability and practicability in industrial scenarios.

load dispatchcoordinated optimizationparticle swarm optimization algorithm

谢文旺、吴昊文、王思源

展开 >

南方电网数字电网研究院股份有限公司,智能电网技术与标准研究所,广东,广州 510663

合肥工业大学,电气与自动化工程学院,安徽,合肥 230009

负荷调度 协同优化 粒子群优化算法

南方电网数字电网研究院有限公司科技项目

YTYJL20007

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(9)