首页|基于改进DBSCAN的低压开关机械故障诊断研究

基于改进DBSCAN的低压开关机械故障诊断研究

扫码查看
基于专家知识的低压开关故障诊断方法主观性强且需要大量故障数据作为训练样本,泛化能力弱.提出一种基于密度聚类(DBSCAN)的无监督低压开关故障诊断方法.利用主成分分析(PCA)对低压开关线圈电流信号进行降维分解获得低维主分量;将低维主分量作为DBSCAN的输入进行聚类分析,将状态数据自动化分为"正常""铁芯卡涩""铁芯空行程大""匝间短路""电源电压过低"5种类型,从而实现不同故障状态的有效诊断.同时,针对DBSCAN参数设置难题,提出利用果蝇优化算法(FOA)对其全局寻优,提升聚类性能.基于实测数据的试验结果表明,所提方法对5种故障类型均能获得优于95.6%的识别结果,平均正确识别率达到96.5%,具有较高的应用前景.
Research on Low Voltage Switch Mechanical Fault Diagnosis Based on Improved DBSCAN
The traditional low voltage switch fault diagnosis method is based on expert knowledge,has strong subjectivity,re-quires a large amount of fault data as training samples,and has weak generalization ability.This paper proposes an unsuper-vised low voltage switch fault diagnosis method based on density based spatial clustering of applications with noise(DBSCAN).The principal component analysis(PCA)is used to reduce the dimensionality of the low voltage switch coil current signal and obtain low dimensional principal components.The low dimensional principal components are used as inputs for clustering analy-sis in DBSCAN,and the state data are automatically divided into five different types to achieve effective diagnosis of different fault states.Aiming at the difficulty of setting DBSCAN parameters,a fruit fly optimization algorithm(FOA)is proposed to globally optimize it and improve clustering performance.The experimental results based on measured data show that the pro-posed method can achieve better recognition results than 95.6%for all five types of faults,with an average correct recognition rate of 96.5%,indicating higher application prospects.

low voltage switchcircuit breakerfault diagnosisunsupervised clusteringDBSCAN

郑皓云、桑成磊、陈玖贵

展开 >

广东电网有限责任公司广州荔湾供电局,广东,广州 510000

低压开关 断路器 故障诊断 无监督聚类 DBSCAN

2022年广东电网有限责任公司依托基建工程技术创新专题项目

030118DP22120065

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(9)