首页|基于改进贝叶斯网络的电力大数据存储架构可扩展性优化算法

基于改进贝叶斯网络的电力大数据存储架构可扩展性优化算法

扫码查看
受到传统贝叶斯网络局部搜索寻优机制的影响,在电力大数据存储框架扩展优化中无法兼顾全局扩展数据间的依赖关系,导致优化出现局部偏差,扩展存储部分性能衰减严重.为了解决这一问题,通过构建电力大数据存储架构的贝叶斯网络,建立电力大数据存储架构可扩展节点,确定其原始框架节点可扩展上限,改进贝叶斯网络结构的扩展性编码计算,以及存储框架扩展性优化适应度评价,由此重新定义优化算法.仿真实验数据表明:提出算法的读取响应和写入响应指标均控制在60 ms以下,且在波动幅度控制方面表现最好;对于不同容量的样本集,其读取性能和写入性能的均值偏差分别为0.2和0.3,接近理想状态,适应度系数值最大为2.提出算法切实可行,具有较高的实际应用价值与市场推广价值.
Scalability Optimization Algorithm of Power Big Data Storage Architecture Based on Improved Bayesian Network
Affected by the traditional local search and optimization mechanism of Bayesian networks,in the expansion and opti-mization of power big data storage frameworks,it is impossible to balance the dependency relationship among global extended data,resulting in local deviations in optimization and severe performance degradation of the extended storage part.In order to solve this problem,a Bayesian network for power big data storage architecture is constructed.The expandable nodes of the power big data storage architecture are established and the upper limit of the original framework nodes is determined.The scal-ability coding calculation of the improved Bayesian network structure and the fitness evaluation of the storage framework scal-ability optimization are redefined as the optimization algorithm.The data from simulation and comparative experiments indicate that the proposed algorithm has both read response and write response indicators controlled below 60 ms,and performs best in controlling fluctuation amplitude.For sample sets with different sizes,the mean deviations of read and write performance are 0.2 and 0.3 respectively,which are close to the ideal state.The maximum fitness coefficient value is 2.The proposed algo-rithm is practical and feasible,with higher practical application value and market promotion value.

improved Bayesian networkpower big datastorage frameworkoptimization algorithm

邓志东、刘鲲鹏

展开 >

国家电网有限公司客户服务中心,天津 300309

改进贝叶斯网络 电力大数据 存储框架 优化算法

国网客服中心2023年客户服务数据管理能力成熟度提升技术服务项目

SGKF0000DFJS2310026

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(9)