首页|BP神经网络模型在上市电力企业经营风险预警系统的应用

BP神经网络模型在上市电力企业经营风险预警系统的应用

扫码查看
针对目前电力企业财务风险预警存在精度低等问题,利用FOA优化BP神经网络,并在确定财务风险指标评价体系的基础上,构建上市电力企业财务风险预警模型,评价指标为现金流量、成长能力、营运能力、偿债能力、盈利能力和市场维度.在正常企业、轻度财务危机和重度财务危机3种类型企业财务危机预测中,FOA-BP神经网络的准确率分别为92.31%、91.67%和91.67%.证明所提出的企业财务评价体系和预测模型具有极高的准确度,能够应用于企业的财务风险管控.
Application of BP Neural Network Model in the Operational Risk Early Warning System of Listed Electric Power Enterprises
Aiming at the low accuracy of the current financial risk early warning of electric power enterprises,the study uses FOA to optimize BP neural network,and constructs a financial risk early warning model for listed electric power enterprises on the basis of determining the financial risk index evaluation system,and the evaluation indicators are cash flow,growth ability,operational ability,debt servicing ability,profitability and market dimensions.In the financial crisis prediction of three types of enterprises:normal enterprises,mild financial crisis and severe financial crisis,the accuracy rates of TOA-BP neural network are 92.31%,91.67%and 91.67%,respectively.It is proved that the proposed enterprise financial evaluation system and fore-casting model have high degree accuracy,and can be applied to the financial risk control of enterprises.

BP neural networkFOAelectric power enterpriseoperational riskearly warning

王宏刚、王一蓉、郑凤柱、于宙

展开 >

国家电网有限公司大数据中心,北京 100032

北京国电通网络技术有限公司,北京 100070

BP神经网络 FOA 电力企业 经营风险 预警

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(9)