首页|基于卡尔曼滤波的慕课学习行为智能预测方法

基于卡尔曼滤波的慕课学习行为智能预测方法

扫码查看
为了降低慕课退课率,提升慕课教学质量,研究基于卡尔曼滤波的慕课学习行为智能预测方法.利用华为nova 5 pro的IMX582型摄像头,采集慕课环境中的学习行为数据;利用自回归积分滑动平均模型,依据采集的学习行为数据,建立慕课学习行为观测模型,并转换成状态空间模型;以状态空间模型的计算结果为卡尔曼滤波的初始状态向量;通过卡尔曼滤波更新初始状态向量,获取慕课学习行为的智能预测结果;在卡尔曼滤波内引入渐消因子,以及协方差匹配判据的方法,补偿卡尔曼滤波内后验协方差矩阵的不确定性,修正卡尔曼滤波输出的慕课学习行为智能预测结果.实验证明,该方法智能预测精度较高,应用该方法后可有效降低慕课退课率,提升学习者的学习活跃度.
Intelligent Prediction Method of MOOC Learning Behavior Based on Kalman Filter
In order to reduce the dropout rate of MOOC and improve the quality of MOOC teaching,an intelligent prediction method for MOOC learning behavior based on Kalman filter is studied.IMX582 camera of Huawei Nova 5 pro is used to collect learning behavior data in the MOOC environment.The autoregressive integral sliding average model based on the collected learning behavior data is used to establish an observation model for MOOC learning behavior and convert it into a state space model.The calculation results of the state space model is used as the initial state vector for Kalman filter.By updating the ini-tial state vector through Kalman filter,intelligent prediction results of MOOC learning behavior is obtained.The fading factor and covariance matching criterion are introduced into the Kalman filter to compensate the uncertainty of the posterior covariance matrix in the Kalman filter and correct the intelligent prediction results of MOOC learning behavior output by the Kalman fil-ter.Experimental results show that this method has high accuracy in intelligent prediction.After applying this method,the dropout rate of MOOC can be effectively reduced,and the learning activity of learners can be improved.

Kalman filterMOOC learning behaviorintelligent predictionautoregressive integral slidingfading factor

赵成丽

展开 >

雅安职业技术学院,智能制造与信息工程学院,四川,雅安 625000

卡尔曼滤波 慕课学习行为 智能预测 自回归积分滑动 渐消因子

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(9)