首页|基于卷积神经网络统一搜索的推荐能力建设

基于卷积神经网络统一搜索的推荐能力建设

扫码查看
随着信息时代的发展,推荐系统对满足用户需求至关重要.然而,现有系统存在诸如信息稀缺和语义关系挖掘不足等问题.为此,提出了 一种基于卷积神经网络的推荐系统,系统由异质信息特征融合模块、局部信息推荐模块、多标签分类的全局信息推荐模块和异质信息搜索推荐模块组成,旨在改善传统方法在搜索引擎查询推荐中的不足.实验结果显示,在MovieLens数据集上,所建系统的精确率为0.8879,召回率为0.7958,均方根误差为0.8531.在未来的研究中,可以通过进一步优化模型参数、引入更多异质信息源以及考虑用户反馈对模型进行改进.
Recommendation Capacity Building Based on Convolutional Neural Network Unified Search
With the development of the information age,recommendation systems are crucial in meeting users needs.However,existing systems suffer from issues such as information scarcity and insufficient mining of semantic relationships.This paper proposes a recommendation system based on convolutional neural network,which consists of heterogeneous information feature fusion module,local information recommendation module,global information recommendation module for multi label classifica-tion,and heterogeneous information search recommendation module.The system aims to improve the shortcomings of tradi-tional methods in search engine query recommendation.The experimental results show that on the MovieLens dataset,the ac-curacy of the system is 0.8879,the recall is 0.7958,and the root mean square error is 0.8531.In future research,the model can be improved by further optimizing its parameters,introducing more heterogeneous information sources,and considering us-ers feedback.

convolutional neural networkWeb searchdeep learningcontext information

杨文娟

展开 >

上海中侨职业技术大学,信息工程学院,上海 201514

卷积神经网络 网络搜索 深度学习 上下文信息

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(9)