首页|基于改进深度学习的VTE诊疗辅助系统

基于改进深度学习的VTE诊疗辅助系统

扫码查看
为了提高深度置信网络(DBN)进行VTE诊疗的辅助效果,将蝴蝶优化算法(BOA)引入深度置信网络进行参数优化,提出一种基于BOA-DBN的VTE诊疗辅助系统.针对DBN性能受其参数设定的影响,将BOA应用于DBN的参数寻优和VTE诊疗辅助系统.为了验证所提出模型的优越性,与F A-DBN、PSO-DBN、G A-DBN进行比较.结果表明,所提出模型的VTE诊疗辅助效果最佳,这对VTE诊疗辅助性能的提升具有一定的现实意义.
VTE Diagnosis and Treatment Assistant System Based on Improved Deep Learning
In order to improve the assistant effect of deep belief network(DBN)in VTE diagnosis and treatment,the butterfly optimization algorithm(BOA)is introduced into the parameter optimization of DBN,a VTE diagnosis and treatment assistant system based on BOA-DBN is proposed.In view of the influence of the parameter setting on the performance of DBN,the BOA is applied to the parameter optimization of DBN and the VTE diagnosis and treatment assistant system.In order to verify the superiority of the proposed model,it is compared with FA-DBN,PSO-DBN and GA-DBN.The results show that the VTE di-agnosis and treatment assistant effect of the proposed model is the best,which has certain practical significance for the improve-ment of VTE diagnosis and treatment assistant performance.

deep belief networkbutterfly optimization algorithmvenous thromboembolismdiagnosis and treatment assis-tance

申中超、李晨琦、王帅

展开 >

北京市大兴区人民医院,北京 102600

北京科技大学,计算机与通信工程学院,北京 100000

河北工程大学,数理科学与工程学院,河北,邯郸 056038

深度置信网络 蝴蝶优化算法 静脉血栓栓塞症 诊疗辅助

国家科学基金面上项目河北省自然科学基金项目

520772721HBS12903

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(10)