首页|基于时序数据和概率模型的智能交通网络关键节点安全保护方法

基于时序数据和概率模型的智能交通网络关键节点安全保护方法

扫码查看
为了解决智能交通网络中关键节点因缺乏离散程度分析导致的保护效果不佳问题,提出基于时序数据和概率模型的智能交通网络关键节点安全保护方法.结合交通流的时序数据以及节点连通概率模型,对交通网络关键特征参数进行选定,明确网络内部离散程度以及连通性能;将关键性特征参数作为中心性指标,对节点的重要度进行求解,从而实现关键节点辨识;构建关键节点的交通流量平衡模型,对节点流量负载状态进行平衡.从而实现节点安全保护.实验结果表明,采用提出的方法对交通网络关键节点进行安全保护后,节点的交通流量负载比明显降低,具备较为理想的安全保护效果.
Security Protection Method for Key Nodes of Intelligent Traffic Network Based on Time Series Data and Probabilistic Models
To solve the problem of poor protection effect of key nodes in intelligent traffic network due to the lack of dispersion degree analysis,a security protection method for key nodes in intelligent traffic network based on time series data and probabi-listic models is proposed.By combining time series data of traffic flow and node connectivity probabilistic models,it selects key feature parameters of the traffic network,clarifies the degree of internal dispersion and connectivity performance of the net-work.Using key feature parameters as centrality indicators,the importance of nodes is solved to achieve identification of key nodes.A traffic flow balance model is established for key nodes,the traffic load status of nodes are balanced,and node security protection is achieved.The experimental results show that after using the proposed method to provide security protection for key nodes in the traffic network,the traffic flow load ratio of the nodes is significantly reduced,and it has a relatively ideal se-curity protection effect.

time series dataprobabilistic modeltraffic networkkey node

陈婧、李涛、晏凯锋、肖强、刘文疆

展开 >

云南公路联网收费管理有限公司,云南,昆明 650000

时序数据 概率模型 交通网络 关键节点

云南省数字交通重点实验室

202205AG070008

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(10)