首页|人体骨骼关节动作AI识别在沉浸式体验设计中的应用

人体骨骼关节动作AI识别在沉浸式体验设计中的应用

扫码查看
由于人体动作的多样性和复杂性,现有方法无法精准地实现人体和背景的分离,且未能捕捉关节关键特征,人体动作与虚拟对象之间动作跟随准确性不佳.为此,提出人体骨骼关节动作AI识别在沉浸式体验设计中的应用研究.通过Kinect传感器获取人体动作图像,利用阈值分割技术将人体从背景环境中分割,并提取人体骨骼关节关键特征.以特征为输入,利用BP神经网络实现人体骨骼关节动作识别.将人体动作数据映射到虚拟对象上,让二者动作实时同步,实现沉浸式体验.结果表明,所提方法的Kappa系数接近于1,识别结果一致性较高.且在沉浸式交互测试中,实际人体与虚拟人物间的关节运动角度相关系数最低仅为0.96,具有较好的应用效果.
Application of AI Recognition of Human Skeletal and Joint Actions in Immersive Experience Design
Due to the diversity and complexity of human actions,existing methods can not accurately separate the human body from the background,and fail to capture key joint features,resulting in poor motion following accuracy between human actions and virtual objects.Therefore,the application research of AI recognition of human skeletal and joint actions in immersive expe-rience design is proposed.The Kinect sensor is used to obtain human motion images,threshold segmentation technology is used to segment the human body from the background environment,and extract key features of human skeletal and joints.Using features as input,BP neural network is used to achieve human skeletal and joint action recognition.Human action data are mapped to virtual objects,enabling real-time synchronization of their actions and achieving an immersive experience.The re-sults show that the Kappa coefficient of proposed method is close to 1,which has high consistency in recognition results.In the immersive interaction test,the lowest correlation coefficient of joint action angle between real human body and virtual character is only 0.96,indicating good application effectiveness.

human skeletal and joint actionAI recognitionimmersive experience

赵泾钧、杨婷

展开 >

北京经济管理职业学院珠宝与艺术设计学院,北京 100102

北京经济管理职业学院人工智能学院,北京 100102

人体骨骼关节动作 AI识别 沉浸式体验

北京市教育委员会科研计划项目资助

SM202314073001

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(10)