首页|基于改进集成学习算法的公司品牌影响力趋势预测模型

基于改进集成学习算法的公司品牌影响力趋势预测模型

扫码查看
为了避免对品牌影响力的影响,结合品牌价值及其投资环境等因素,对单一因素学习算法进行改进,并基于改进集成学习算法构建一套全新的公司品牌影响力趋势预测模型.在模型底层量化决策量,将传统单一因素决策量化为多要素集成决策,通过学习属性自适应不同层级下品牌影响要素,增强预测模型的决策能力;通过多属性、多类别分类器对不同影响要素进行综合分析,提升预测模型预测结果的可信度;增加品牌影响力预测参量的模型配置,整合模型各单元预测优势,合理分配预测参量与资源,保证模型预测过程的稳定.结果表明,提出模型具备良好的预测稳定素质与精准的结果预测素质,具有较高的推广价值.
Trend Prediction Model of Company Brand Influence Based on Improved Integrated Learning Algorithm
In order to avoid the impact on brand influence,combined with factors such as brand value and investment environ-ment,the single factor learning algorithm is improved,and a new company brand influence trend prediction model is built based on the improved integrated algorithm.The decision-making quantity is quantified at the bottom of the model,the traditional single-factor decision-making is quantified into multi-factor integrated decision-making,and the decision-making ability of the prediction model is enhanced by learning attributes to adapt the brand influence factors at different levels.Through comprehen-sive analysis of different influencing factors through multi-attribute and multi-class classifiers,the reliability of the prediction results of the prediction model is improved.It increases the model configuration of brand influence prediction parameters,in-tegrates the prediction advantages of each unit of the model,reasonably allocates the prediction parameters and resources,and ensures the stability of the model prediction process.The results show that the proposed model has good prediction stability quality and accurate result prediction quality,and has higher promotion value.

improved integrated learningcompany brandinfluencetrend prediction model

庄莉、田小冬、苏江文、王秋琳、苏婷

展开 >

福建亿榕信息技术有限公司,福建,福州 350003

国网江苏省电力有限公司,江苏,南京 210024

改进集成学习 公司品牌 影响力 趋势预测模型

国家电网公司总部科技项目

1400-202257240A-1-1-ZN

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(10)