首页|基于深度神经网络的光伏发电时间序列多元预测

基于深度神经网络的光伏发电时间序列多元预测

扫码查看
利用不同时间序列间的相关性和依赖性基于深度神经网络(DNNs)提出了两种不同的多元长短期记忆网络(LSTM)光伏输出功率预测方法,充分考虑了空气温度、风速等影响因素之间的相关性特征.以光伏发电站运行数据为例,通过对光伏发电预测模型进行训练和测试,并与单变量LSTM和Stacked-LSTM模型的结果进行比较,研究结果表明,所提的Conv-LSTM可以在减少30.76%训练时间的基础上提升0.71%~1.33%的准确度,Conv-LSTM和 Multi-LSTM分别以高达93.12%和96.12%的准确度跟踪实际光伏发电.
Multivariate Prediction of Photovoltaic Power Time Series Based on Deep Neural Networks
In this paper,two different multivariate long-and short-term memory(LSTM)network PV output power prediction methods are proposed based on deep neural networks(DNNs)by utilizing the correlation and dependence between different time series,with full consideration of the correlation characteristics between air temperature,wind speed and other influencing fac-tors.Taking the PV power plant operation data as an example,by training and testing the PV power prediction model and com-paring the results with those of the univariate LSTM and Stacked-LSTM models,the results of the study show that the pro-posed Conv-LSTM can improve the accuracy by 0.71%~1.33%on the basis of reducing the training time by 30.76%,and the Conv-LSTM and Multi-LSTM track real PV with up to 93.12%and 96.12%accuracy.

photovoltaic power forecastingconvolutional neural networkdeep neural networkslong short-term memory net-work

王艳芹、妙红英、周凤华、张海宁、王禹霖

展开 >

国网冀北电力有限公司承德供电公司,河北,承德 067000

光伏发电预测 卷积神经网络 深度神经网络 长短期记忆网络

国家电网公司科技项目

520940210009

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(10)