首页|基于数据挖掘与时间序列的用电量波动风险预警模型

基于数据挖掘与时间序列的用电量波动风险预警模型

扫码查看
为了获取准确的用电量波动风险预警,保障电力系统运行稳定性,研究基于数据挖掘与时间序列的用电量波动风险预警模型.采用模糊C均值聚类算法将历史用电量数据划分为产生波动的用电量数据和未产生波动的用电量数据.针对用电量产生波动的用户,根据历史用电量数据,采用基于时间序列的预测方法,考虑长期趋势、季节变化与不规则变动三方面影响因素,预测其在未来一段时间中的用电量数据.构建风险预警模型,将未来时间点预测用电数据同其上下基线进行比较,获取用电量数据走势,提前判断用电量是否会产生波动,若产生波动则进行预警.实验结果显示,所提模型可准确划分用户用电量数据类别,获取准确的用电量预测结果,预警准确率均高于97.5%.
Early Warning Model of Electricity Consumption Fluctuation Risk Based on Data Mining and Time Series
In order to obtain accurate early warning results of electricity consumption fluctuation risk,and ensure the stability of power system operation,a electricity consumption fluctuation risk early warning model based on data mining and time series is studied.The fuzzy C-means clustering algorithm is used to divide the historical electricity consumption data into fluctuating e-lectricity consumption data and non-fluctuating electricity consumption data.For users whose electricity consumption fluctu-ates,according to the historical electricity consumption data,the prediction method based on time series is adopted to predict their electricity consumption data in the future by taking into account the long-term trend,seasonal defecation and irregular changes.This paper builds a risk early warning model,compares the predicted electricity consumption data at the future time point with its upper and lower baselines,obtains the trend of electricity consumption data,and judges whether the electricity consumption may fluctuate in advance.If it does,the system gives an early warning.The experimental results show that the model can accurately classify the user electricity consumption data and obtain accurate electricity consumption prediction re-sults,and the early warning accuracy is higher than 97.5%.

data miningtime serieselectricity consumption fluctuationrisk warningclustering algorithmfluctuation influ-encing factors

苏华权、黄彬系

展开 >

广东电网有限责任公司,广东,广州 510000

数据挖掘 时间序列 用电量波动 风险预警 聚类算法 波动影响因素

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(10)