首页|基于无人机的架空输电线路缺陷检测方法

基于无人机的架空输电线路缺陷检测方法

扫码查看
目前,基于无人机平台的输电线检测模型存在数据依赖高、计算量与参数量大、检测精度有限等问题,为此,提出一种基于无人机的输电线智能巡检方法.提出改进的Faster R-CNN缺陷检测算法,分别使用MobileNet、软非极大抑制和上下文感知感兴趣区域池化层,提高模型检测精度以及对小尺寸元件的敏感度.鉴于图像中的复杂噪声环境,应用卡尔曼滤波算法对检测结果进行优化校准,以此提升模型的检测精度和稳定性.以地面高性能服务器训练以及无人机平台实际测试为例验证所提模型.测试结果表明,与YOLO、SSD和Faster R-CNN相较,所提模型性能最优.通过无人机平台测试,所提模型的平均精度为84.37%,网络规模为19.8MB,FPS可达28.7帧/s.
Defect Detection Method of Overhead Transmission Line Based on UAV
Aimed at the problems of high data dependence,large amount of calculation and parameters,and limited detection ac-curacy in the current transmission line detection model based on UAV platform,an intelligent transmission line detection meth-od based on UAV is proposed.An improved Faster R-CNN defect detection algorithm is proposed,using MobileNet,soft non-maximum suppression and context-aware ROI pooling layer respectively to improve the model detection accuracy and sensitivity to small size components.In view of the complex noise environment in the image,the Kalman filter algorithm is used to opti-mize and calibrate the detection results,so as to further improve the detection accuracy and stability of the model.The ground high-performance server training and the actual test of the UAV platform are taken as examples to verify the proposed model.The test results show that the proposed model has the best performance compared with YOLO and SSD Fast R-CNN.Through the UAV platform test,the average accuracy of the proposed model is 84.37%,the network scale is 19.8 MB,and the FPS can reach 28.7 Frame/s.

transmission lineUAVimage processingdeep learningKalman filtering

王艳军、李明磊、杨霄霄、李想

展开 >

国网浙江省电力有限公司宁波供电公司,浙江,宁波 315000

输电线路 无人机 图像处理 深度学习 卡尔曼滤波

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(10)