首页|基于深度强化学习网络的GIS超声波局部放电检测信号识别算法设计

基于深度强化学习网络的GIS超声波局部放电检测信号识别算法设计

扫码查看
针对气体绝缘封闭开关(GIS)设备缺陷识别准确度偏低的现状,设计一种基于深度强化学习(DQN)的GIS超声波局部放电检测信号识别算法.该算法以GIS设备的超声波信号为输入数据,并采用局部均值分解(LMD)算法将信号分解为多个乘积分量,再将其作为DQN模型的输入进行学习及训练.同时,利用训练完毕的DQN模型实现对GIS设备局部放电故障的检测与识别.算例分析结果表明,相比于深度信念网络(DBN)和DQN算法,所提算法具有显著优势,平均识别准确度可达89.75%.在实际电网GIS设备的运行监测中还发现,电晕及悬浮放电的占比较大,应加强对二者的监测预防.
Design of GIS Ultrasonic Partial Discharge Detection Signal Recognition Algorithm Based on Deep Q-Learning Network
In view of the low accuracy of gas insulated switdgear(GIS)equipment defect identification,a GIS ultrasonic partial discharge detection signal identification algorithm based on deep Q-learning is designed.The algorithm uses the ultrasonic of GIS equipment as the input data,decomposes the ultrasonic into multiple product components using the local mean decomposi-tion(LMD)algorithm,and uses it as the input of the deep DQN model to learn and train the DQN model.The DQN model af-ter training is used to realize the detection and recognition of partial discharge faults of GIS equipment.The results of numerical examples show that compared with deep belief network(DBN)and DQN algorithms,the average recognition accuracy of the proposed algorithm can reach 89.75%,which has significant advantages.In the actual operation and monitoring of GIS equip-ment in power grid,it is found that corona discharge and suspension discharge account for a large proportion,so the monitoring and prevention of these two kinds of partial discharges should be strengthened.

deep Q-learning networkpartial dischargeultrasonicGIS

何亚文、罗周维、李奇艳、王子浪

展开 >

湖南五凌电力工程有限公司,湖南,长沙 410000

深度强化学习网络 局部放电 超声波 GIS

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(11)