首页|电能计量设备自动化检定系统测量精度分析及校准算法

电能计量设备自动化检定系统测量精度分析及校准算法

扫码查看
使用模糊神经网络算法对小负荷分布式双向电能计量用户的双电表差值计量算法进行改进设计.双电表数据分别形成多列神经网络,输出双电表的修正值,并对修正值进行加权累加为核心算法的解模糊计算,最终输出修真过后结果.经过仿真计算发现,改进差值算法较直接差值算法的误差控制能力提升10倍,且运行该算法的算力资源可以通过常规嵌入系统置入电表箱中.经过对现有用户2020年电费计量结果进行重新验算,对所有用户进行走访调查,发现用户对电费计量工作的主观评价提升17.4个百分点.因而电能计量设备自动化检定系统采用的改进措施可以适用于当前的双向供电计量需求,能够有针对性地核检及降低接触电阻的校准措施,具有一定的工程实现可行性.
Measurement Accuracy Analysis and Calibration Algorithm of Automatic Verification System for Electric Power Metering Equipment
In order to improve the algorithm of double meter difference measurement for small load distributed two-way electric power metering users,the fuzzy neural network algorithm is used to form multi-column neural network for the data of double meters,and the correction values of double meters are output respectively.The weighted accumulation of the correction values is used as the core algorithm to solve the fuzzy calculation,and finally the results after the correction are output.The simula-tion results show that the error control ability of the improved difference algorithm is 10 times higher than that of the direct difference algorithm,and the computing resources running the algorithm can be put into the meter box through the conventional embedded system.After rechecking the results of electricity tariff measurement of existing users in 2020 and interviewing all users,it is found that the subjective evaluation of users on electricity tariff measurement has increased by 17.4 percentage points.It is concluded that the improvement measures adopted by the automatic verification system of electric energy metering equipment is applicable to the current two-way power supply measurement demand,can be used to check and reduce the calibra-tion measures of contact resistance,and has certain engineering feasibility.

improved difference algorithmintelligent meterelectric energy measurementfuzzy neural networkerror control

姚智聪、彭龙、赵炳辉、张科、郑金通

展开 >

广东电网有限责任公司计量中心,广东,广州 511543

广州宇阳电力科技有限公司,广东,广州 510075

改进差值算法 智能电表 电能计量 模糊神经网络 误差控制

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(11)