首页|基于深度强化学习的智能电网在线学习及自主优化控制演示系统

基于深度强化学习的智能电网在线学习及自主优化控制演示系统

扫码查看
为了推广智能电网在人工智能背景下的建设经验和成果,提出一种基于深度强化学习的智能电网在线学习及自主优化控制演示系统.在高度动态复杂环境中,构建一个结合经验和实践的电网运行状态经验库;通过持续地与高度动态且复杂的环境进行耦合与互动,实现在时间正序下对电网运行状况的在线学习;实现高度动态复杂环境下电网运行最优协同控制.针对演示系统开展应用实践验证分析,结果表明,较长周期内电网运行态势预测准确率达93.57%,动态环境下电网运行最优协同控制有效率达92.81%,具备电网运行态势在线学习功能,可实现高度动态复杂应用场景下的电网运行方案最优控制.
Smart Grid Online Learning and Autonomous Optimal Control Demonstration System Based on Deep Reinforcement Learning
In order to promote the experience and achievements of smart grid construction under the background of artificial in-telligence,a smart grid online learning and autonomous optimal control demonstration system based on deep reinforcement learning is proposed.The experience pool of power grid operation situation in highly dynamic and complex environment is formed by integrating experience and practice.Through continuous coupling and interaction with highly dynamic and complex environment,online learning of power grid operation situation under positive time sequence is realized.The optimal coordinated control of power grid operation in highly dynamic and complex environment is realized.The application practice verification analysis is carried out for the demonstration system.The results show that the accuracy of power grid operation situation pre-diction in a long period is 93.57%,and the effectiveness of optimal coordinated control of power grid operation in a dynamic en-vironment is 92.81%.It has the online learning function of power grid operation situation,and can realize the optimal control of power grid operation scheme in highly dynamic and complex application scenarios.

deep reinforcement learningsmart gridsituational online learningautonomous optimization controlvisual dem-onstration system

韩吉安、马海鑫、余杰文、侯剑、蔡新雷

展开 >

南方电网数字电网研究院股份有限公司,广东,广州 510600

广东电网有限责任公司电力调度控制中心,广东,广州 510610

深度强化学习 智能电网 态势在线学习 自主优化控制 可视演示系统

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(11)