首页|基于改进灰狼算法优化和极限学习机的电网电力负荷预测

基于改进灰狼算法优化和极限学习机的电网电力负荷预测

扫码查看
研究短期电网电力负荷预测问题,提出一种基于改进灰狼算法(IGWO)和极限学习机负荷预测的方法.提出改进的灰狼算法,通过引入自变权重系数和精英扰动更新策略,以提高IGWO全局寻优能力.利用DBSCAN算法对电力负荷数据集进行聚类分析,最大限度降低数据差异性对预测精度影响.利用IGWO优化后的ELM模型(IGWO-ELM)对分类电力负荷数据集进行预测.仿真结果表明,与其他预测方法比较,所提分类IGWO-ELM预测精度更高.
Power Load Forecasting Based on Improved Gray Wolf Optimizer Algorithm and Extreme Learning Machine
The problem of short-term power grid load forecasting is studied,a power grid load forecasting method based on im-proved grey wolf optimizer(IGWO)algorithm and extreme learning machine is proposed.The IGWO is proposed,the self var-ying weight coefficient changes and elite disturbance update strategies are introduced to improve the global optimization ability of IGWO.The density based spatial clustering of application with noise(DBSCAN)algorithm is used for clustering analysis of power load data to minimize the impact of data differences on prediction accuracy.The IGWO optimized ELM model(IGWO-ELM)is used to predict the multi cluster power load data-set.The simulation results show that compared with other prediction methods,the proposed classification IGWO-ELM has higher prediction accuracy.

power load forecastinggray wolf optimizerDBSCANextreme learning machineprediction accuracy

李杰、李蓝青、曹帅、戴上

展开 >

国网江苏省电力有限公司,江苏,南京 210003

电力负荷预测 灰狼算法 DBSCAN 极限学习机 预测精度

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(11)