首页|基于改进LSTM的风力发电数据预测算法

基于改进LSTM的风力发电数据预测算法

扫码查看
现阶段长短期记忆(LSTM)神经网络在对风力发电数据进行预测时,仍存在过拟合、超参数选择范围偏大、时间成本较高、精度提升困难等问题.对此,提出一种基于麻雀搜索算法(SSA)和注意力机制(AM)的优化LSTM风电功率预测算法,构建SSA-SZLSTM-AM预测模型.该模型在利用超驱动区域失活(SZ)正则化改进LSTM结构的基础上,采用SSA解决LSTM因超参数选择随机性过大而导致预测精度难以提升的问题.同时,通过AM在LSTM预测时筛选出重要特征,进一步提高对风电功率的预测精度,且使用风电场相关数据对所提算法的可行性进行验证.结果表明,相较于6种比较算法,所提算法的均方根误差与平均绝对误差分别降低了约17.93个百分点和5.34个百分点,而决定系数(R2)至少增加了 2.14个百分点,有效提升了风电功率的预测精度.
Data Prediction Algorithm for Wind Power Generation Based on Improved LSTM
At this stage,the long short-term memory(LSTM)neural network has some problems in forecasting wind power generation data,such as over fitting,large super parameter selection range,higher time cost and difficulty in improving accura-cy.In view of this,this paper proposes a wind power prediction algorithm which uses sparrow search algorithm(SSA)and at-tention mechanism(AM)to optimize LSTM,and constructs the corresponding SSA-SZLSTM-AM prediction model.On the basis of improving LSTM structure by surprisal-driven zoneout(SZ)regularization,SSA is adopted to solve the problem that the prediction accuracy of LSTM is difficult to improve due to the large randomness of super parameter selection.At the same time,important features are screened out by AM during LSTM prediction,which further improves the prediction accuracy of wind power,and the feasibility of the proposed algorithm is verified by using wind power data of wind farms.The results show that,compared with the 6 comparison algorithms,the root mean square error and mean absolute error of the proposed algo-rithm reduce by 17.93 percentage points and 5.34 percentage points,respectively,while the coefficient of determination(R2)increases by at least 2.14 percentage points,which effectively improves the prediction accuracy of wind power.

wind power predictionsparrow search algorithmattention mechanismlong short-term memory neural network

于玉宗、汲倩倩、刘玉鹏

展开 >

国能网信科技(北京)有限公司,软件开发中心,北京 100011

风电功率预测 麻雀搜索算法 注意力机制 长短期记忆神经网络

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(11)