首页|基于CNN-LSTM的电力消耗预测与异常检测方法

基于CNN-LSTM的电力消耗预测与异常检测方法

扫码查看
电力系统的智能化和信息化发展使得准确预测电力消耗量和及时发现异常用电行为成为可能.目前,大量研究致力于提高用电量预测的精确度,但鲜有工作同时关注异常检测问题.基于此,提出一种基于卷积神经网络(CNN)和长短期记忆(LSTM)网络的深度学习方法CNN-LSTM.该方法将一维CNN与LSTM模型相结合,采用滑动窗口的方式对时间序列电力数据进行建模,并使用ESP32集成电源传感器采集的户用电力数据进行训练.研究结果显示,与单独使用LSTM模型相比,CNN-LSTM模型的均方误差降低了 29%.研究提供了一种新的深度学习方法,可用于提高电力消耗预测和电网异常检测的性能.
A CNN-LSTM-based Method for Power Consumption Prediction and Anomaly Detection
The development of power system makes importance to accurately predict power consumption and detect anomalous power usage behaviors in a timely manner.A large number of studies are devoted to improving the accuracy of electricity con-sumption prediction,but few works focus on anomaly detection.Based on this fact,this paper proposes a CNN-LSTM deep learning method by combing a 1-dimensional CNN with an LSTM model to model time-series electricity data with a sliding win-dow approach.The network is trained to use household electricity data collected by ESP32 integrated power sensors.The re-sults of the study show that the mean square error of the CNN-LSTM model is reduced by 29%and the prediction accuracy is improved compared to the LSTM model alone.The study provides a new deep learning approach that can be used to improve the performance of power consumption prediction and grid anomaly detection.

anomaly detectionCNNLSTMpower consumption predictionpredictive analysis

张艳丽

展开 >

国网冀北电力有限公司计量中心,北京 100032

异常检测 CNN LSTM 电力功耗预测 预测性分析

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(11)