首页|梯度扩散下的电气设备调试危险点自适应识别方法

梯度扩散下的电气设备调试危险点自适应识别方法

扫码查看
电气设备调试过程中工况不稳定,危险点识别过程中容易出现特征漂移,导致危险点识别出现差异,对此,设计一种梯度扩散下的电气设备调试危险点自适应识别方法.建立电气设备调试过程中的信号空间模型,设计设备运行信号某时间段内的有效值,完成危险点信号检测,确定梯度扩散系数,得到去噪滤波数学模型实现信号去噪,防止危险点特征在跨工况条件下出现漂移.利用1DCNN深度网络确定卷积核尺寸,并完成特征提取,将特征样本输入到深度网络中,完成危险点自适应诊断识别过程设计.设置不同危险点状态进行实验,实验结果表明,在跨工况条件下,不同领域危险点样本分布规律相同,能够有效匹配特征,不同类型危险点之间界限明确,在电气设备调试过程中,自适应识别危险点的性能更好.
Adaptive Identification Method of Electrical Equipment Debugging Dangerous Points under Gradient Diffusion
In the process of electrical equipment debugging,the working condition is unstable,and the feature drift is easy to occur in the process of dangerous points,resulting in the difference in the process of dangerous points identification.Therefore,an adaptive identification method of dangerous points in electrical equipment debugging under gradient diffusion is designed.This paper establishes the signal space model during the debugging of electrical equipment,designs the effective value of the e-quipment operation signal in a certain period of time,completes the signal detection of dangerous points,determines the gradi-ent diffusion coefficient,obtains the mathematical model of denoising and filtering to realize signal denoising,prevents the fea-tures of dangerous points from drifting under cross working conditions.This paper also uses ID CNN depth network and deter-mines the convolution kernel size,completes feature extraction,inputs the feature samples into the depth network,and com-pletes the process design of adaptive diagnosis and identification of dangerous points.Setting different dangerous points state for the experiment,and the experimental results show that under cross working conditions,the distribution law of dangerous point samples in different fields is same,which can effectively match the features,and the boundaries between different types of dangerous points are clear.In the process of electrical equipment debugging,the performance of adaptive identification of dan-gerous points is better.

gradient diffusionelectrical equipment debuggingdangerous pointadaptive identificationdepth networkfea-ture driftvariable working condition

黄颖、彭铖、夏骏

展开 >

国网湖南省电力有限公司,湖南,长沙 410004

梯度扩散 电气设备调试 危险点 自适应识别 深度网络 特征漂移 变工况

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(11)