首页|面向网络安全入侵检测的Bi-LSTM算法设计

面向网络安全入侵检测的Bi-LSTM算法设计

扫码查看
传统的网络安全入侵检测系统在面对复杂多变的网络攻击时,往往存在误报率高及准确率低的问题.为了改善这种情况,结合循环神经网络(RNN)和卷积神经网络(CNN)的优点,并将长短期记忆(LSTM)网络模型进行改进,设计一种面向网络安全入侵检测的双向长短期记忆(Bi-LSTM)算法.经过实验验证,该算法在网络安全入侵检测中取得了显著的效果.在5种不同类型的攻击方式下,CNN-BiLSTM模型的准确率分别为94.8%、90.2%、96%、90.5%和93.7%,误报率分别为5.98%、7.2%、5.23%、6.84%和6.49%.这些数据表明,设计的Bi-LSTM网络在安全入侵检测中具有较高的准确率和较低的误报率,具有一定的应用价值和研究价值.
Design of Bi-LSTM Algorithm for Network Security Intrusion Detection
Traditional network security intrusion detection systems often have high false alarm rate and low accuracy when fa-cing complex and ever-changing network attacks.In order to improve this situation,this study combines the advantages of re-current neural network(RNN)and convolutional neural network(CNN),and improves the long short-term memory(LSTM)model to design a bidirectional long short-term memory(Bi-LSTM)algorithm for network security intrusion detection.After experimental verification,this algorithm achieves significant results in network security intrusion detection.Under five different types of attack methods,the accuracy of the CNN-Bi-LSTM model reaches 94.8%,90.2%,96%,90.5%and 93.7%,re-spectively,and the false alarm rates are 5.98%,7.2%,5.23%,6.84%and 6.49%,respectively.These data indicate that the designed Bi-LSTM has high accuracy and low false alarm rate in network security intrusion detection,so it has certain ap-plication value and research value.

deep learningconvolutional neural networkintrusion detectionrecurrent neural networklong short-term memo-ry network

于继江

展开 >

中国食品药品检定研究院,北京 102629

深度学习 卷积神经网络 入侵检测 循环神经网络 长短期记忆网络

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(11)