首页|基于人工智能技术的电网故障诊断与预警方法

基于人工智能技术的电网故障诊断与预警方法

扫码查看
在智能电网故障诊断中,由于设备参数类型多样化,同时存在大量不确定信息,导致故障区域难以准确定位.在传统贝叶斯网络算法基础上,引入主成分分析法(PCA)实现对电网故障定位和预警.利用PCA提炼设备元件的特性指标,构建潜在故障元件的集合;采用贝叶斯方法,整合电气参数、状态变量及开关信号,提高多数据源的信息利用效率,从而精确识别故障区域.以1个典型电网为实例,模拟电网典型故障来进行故障区域定位.实验结果表明,算法判定元件故障概率为0.88672,能准确地定位电网故障发生的区域,在实际电力系统故障诊断中将有很好的应用前景.
Power Grid Fault Diagnosis and Early Warning Method Based on Artificial Intelligence Technology
In the fault diagnosis of smart power grid,it is difficult to accurately locate the fault area due to the variety of uncer-tain information and a large number of equipment parameters.Based on the traditional Bayesian network algorithm,the princi-pal component analysis method(PCA)is introduced to realize the fault location and early warning.Using PCA,this paper ex-tracts the characteristic index of the equipment components,and constructs the set of potential fault components.The Bayesian method is adopted to integrate electrical parameters,state variables and switch signals and improve the information utilization efficiency of multiple data sources,so as to accurately identify the fault area.Taking a typical power grid as an example to sim-ulate the typical faults of the power grid and locate the fault area.The experimental results show that the algorithm determining the fault probability of the components is 0.886 72,which can accurately locate the area where the power grid fault occurs,and will have a good application prospect in the actual power system fault diagnosis.

power grid faultBayesian judgmentPCAfault location

贾秉健、孙庆、李慧娟、王耀五

展开 >

新疆信息产业有限责任公司,新疆,乌鲁木齐 830001

新疆首邦人力资源服务有限公司,新疆,乌鲁木齐 830001

电网故障 贝叶斯判断 PCA 故障定位

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(11)