首页|基于数字孪生与知识图谱的轴承迁移诊断方法

基于数字孪生与知识图谱的轴承迁移诊断方法

扫码查看
文章提出一种基于数字孪生与知识图谱的轴承迁移诊断方法.通过数字孪生体的封装、基于降阶模型的降维处理和融合多自由度动力学搭建目标方程来模拟轴承多种故障工况.利用端到端的深度学习结构学习孪生数据集中的故障特征后,仅使用少量轴承数据进行迁移学习,可以克服工业环境中数据量少的问题.通过知识图谱,实现故障诊断结果与故障原因、改善方法等相关联,提高故障诊断结果的多角度分析能力.该方法能够实现滚动轴承数字孪生模型的实时状态更新和性能演变,克服现有工业环境中轴承数据缺乏、数据处理能力弱的缺点.
Bearing Transfer Diagnosis Method Based on Digital Twin and Knowledge Graph
This paper presents a bearing transfer diagnosis method based on digital twin and knowledge graph.The target equa-tion is constructed by encapsulating the physical characteristics of the bearing and using digital twin technology,performing di-mensionality reduction based on an reduced-order model,and integrating multi-degree of freedom dynamics to simulate various fault conditions of the bearing.An end-to-end deep learning structure is employed to learn fault features in the digital twin data-set,and then fine-tuned using on-site experimental data through transfer learning,thereby overcoming the issue of limited data in industrial environments.By the knowledge graph,the diagnostic results are associated with fault causes and improvement strategies,the multi-angle analysis ability of the fault diagnosis outcomes is improved.This method realizes real-time state up-dates and performance evolution of the rolling bearing digital twin model,overcomes the drawbacks of insufficient bearing data and limited data processing capabilities in existing industrial environments.

digital twinbearing fault diagnosistransfer learningknowledge graph

陈雪军、梁川、蔡寅

展开 >

江西南昌济生制药有限责任公司,江西,南昌 330096

上海工程技术大学,电子电气工程学院,上海 201620

数字孪生 轴承故障诊断 迁移学习 知识图谱

2024

微型电脑应用
上海市微型电脑应用学会

微型电脑应用

CSTPCD
影响因子:0.359
ISSN:1007-757X
年,卷(期):2024.40(12)